Passive stiffness of hindlimb muscles in anurans with distinct locomotor specializations.

نویسندگان

  • Nicole Danos
  • Emanuel Azizi
چکیده

Anurans (frogs and toads) have been shown to have relatively compliant skeletal muscles. Using a meta-analysis of published data we have found that muscle stiffness is negatively correlated with joint range of motion when examined across mammalian, anuran and bird species. Given this trend across a broad phylogenetic sample, we examined whether the relationship held true within anurans. We identified four species that differ in preferred locomotor mode and hence joint range of motion (Lithobates catesbeianus, Rhinella marina, Xenopus laevis and Kassina senegalensis) and hypothesized that smaller in vivo angles (more flexed) at the knee and ankle joint would be associated with more compliant extensor muscles. We measured passive muscle tension during cyclical stretching (20%) around L0 (sarcomere lengths of 2.2 μm) in fiber bundles extracted from cruralis and plantaris muscles. We found no relationship between muscle stiffness and range of motion for either muscle-joint complex. There were no differences in the passive properties of the cruralis muscle among the four species, but the plantaris muscles of the Xenopus and Kassina were significantly stiffer than those of the other two species. Our results suggest that in anurans the stiffness of muscle fibers is a relatively minor contributor to stiffness at the level of joints and that variation in other anatomical properties including muscle-tendon architecture and joint mechanics as well as active control likely contribute more significantly to range of motion during locomotion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locomotor function shapes the passive mechanical properties and operating lengths of muscle.

Locomotor muscles often perform diverse roles, functioning as motors that produce mechanical energy, struts that produce force and brakes that dissipate mechanical energy. In many vertebrate muscles, these functions are not mutually exclusive and a single muscle often performs a range of mechanically diverse tasks. This functional diversity has obscured the relationship between a muscle's locom...

متن کامل

Modeling short-range stiffness of feline lower hindlimb muscles.

The short-range stiffness (SRS) of skeletal muscles is a critical property for understanding muscle contributions to limb stability, since it represents a muscle's capacity to resist external perturbations before reflexes or voluntary actions can intervene. A number of studies have demonstrated that a simple model, consisting of a force-dependent active stiffness connected in series with a cons...

متن کامل

Effect of exercise training on passive stiffness in locomotor skeletal muscle: role of extracellular matrix.

The purpose of this study was to evaluate the effect of endurance exercise training on both locomotor skeletal muscle collagen characteristics and passive stiffness properties in the young adult and old rat. Young (3-mo-old) and senescent (23-mo-old) male Fischer 344 rats were randomly assigned to either a control or exercise training group [young control (YC), old control (OC), young trained (...

متن کامل

Effects of early-stage aging on locomotor dynamics and hindlimb muscle force production in the rat.

Attenuation of locomotor function is common in many species of animals as they age. Dysfunctions may emerge from a constellation of age-related impairments, including increased joint stiffness, reduced ability to repair muscle tissue, and decreasing fine motor control capabilities. Any or all of these factors may contribute to gait abnormalities and substantially limit an animal's speed and mob...

متن کامل

Passive tension of rat skeletal soleus muscle fibers: effects of unloading conditions.

In this work we studied changes in passive elastic properties of rat soleus muscle fibers subjected to 14 days of hindlimb unloading (HU). For this purpose, we investigated the titin isoform expression in soleus muscles, passive tension-fiber strain relationships of single fibers, and the effects of the thick filament depolymerization on passive tension development. The myosin heavy chain compo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Zoology

دوره 118 4  شماره 

صفحات  -

تاریخ انتشار 2015